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Abstract
As deep neural networks (DNNs) become increas-
ingly integral to various fields, understanding their
decision-making processes is paramount. Explain-
able Artificial Intelligence (XAI) methods, specif-
ically feature importance techniques, are essential
tools for enhancing the interpretability of these
complex models. This paper presents a com-
parative study of white-box and black-box XAI
methods, focusing on Grad-CAM (white-box) and
LIME (black-box) as representatives of their re-
spective categories. We explore the trade-offs be-
tween these methods in terms of interpretability, fi-
delity, and computational efficiency. By evaluating
their performance using the Explanation Selectivity
metric, this study provides insights into the suitabil-
ity of these methods for object recognition tasks.
The findings aim to guide the selection of appropri-
ate XAI methods, contributing to the development
of more transparent and trustworthy AI systems.

1 Introduction
1.1 Motivation and Practical Goal
As Artificial Intelligence (AI) models become increasingly
complex, it becomes harder for humans to understand these
systems. This is particularly true in fields like computer vi-
sion, where Deep Neural Networks (DNNs) often function as
black-box models, leading even experts to lose track of their
inner workings. This highlights the critical importance of de-
veloping methods to explain AI model decisions.

Explainable Artificial Intelligence (XAI) aims to make AI
models more interpretable and understandable for humans.
XAI seeks to bridge the gap between the opaque nature of
traditional AI models and the need for transparency and ac-
countability in decision-making processes. This is especially
crucial in high-stakes domains such as healthcare, finance,
and autonomous systems like self-driving cars, where deci-
sions can significantly impact people’s lives.

By identifying potential biases, errors, or areas for opti-
mization, XAI can help improve AI models. Understanding
how models make predictions allows us to better identify and
address issues that may lead to inaccurate or unfair outcomes,

potentially causing substantial harm. Additionally, XAI can
facilitate better collaboration between humans and AI sys-
tems by providing explanations that enable humans to under-
stand the rationale behind AI’s suggestions, thereby making
informed decisions.

Overall, XAI is essential for ensuring the responsible and
safe use of AI systems. It is relevant across all areas of AI
and will play a crucial role in ensuring transparency, account-
ability, and the integration of AI models into society as they
continue to evolve.

1.2 Problem Statement
As AI models become more integrated into our daily lives,
understanding the factors influencing their decisions becomes
increasingly important. This need has driven researchers
to focus on developing explainability methods for complex
models. However, selecting an appropriate XAI method for a
specific application remains a challenge.

Although there is a vast array of XAI methods available
(see Related Work), this paper focuses specifically on Fea-
ture Importance methods due to their critical role in identi-
fying which features are most influential in the model’s pre-
dictions. This is essential for building trust in AI systems
and facilitating informed decision-making. However, the se-
lection of the appropriate Feature Importance method itself
poses significant problems:

1. Interpretability vs. Fidelity: Balancing interpretability
and fidelity is challenging. Interpretability ensures that
users can understand the explanations, while fidelity en-
sures that the explanations accurately reflect the model’s
behavior. High interpretability often comes at the cost
of fidelity and vice versa.

2. Black-Box vs. White-Box Methods: Deciding between
black-box and white-box methods for Feature Impor-
tance is complex. Black-box methods, like LIME, do
not require access to the model’s internal structure but
may lack the depth of explanation provided by white-
box methods, like Grad-CAM, which utilize the model’s
internal gradients and architecture.

3. Local vs. Global Explanations: Feature Importance
methods typically provide local explanations, focusing
on specific predictions rather than the model’s overall



behavior. This localized focus can limit the broader un-
derstanding of the model’s decision-making process.

Given these challenges, it is crucial to understand the trade-
offs involved in selecting the appropriate Feature Importance
method. An analysis of black-box and white-box Feature
Importance methods for local explanations can provide valu-
able insights into these trade-offs, thereby aiding in making
well-informed decisions, and ultimately enhancing trust in AI
models, as they become omnipresent in our lives.

1.3 Scientific Contributions
This paper addresses the overarching question: How can an
appropriate explanation method (XAI method) be selected for
a given application? To answer this, the paper explores two
specific sub-questions:

• Based on which metrics and criteria can a method be
selected? (Review section in Background)

• What are the advantages and disadvantages of white-
box and black-box methods for the application of object
recognition? (Application study in Comparison)

By examining these questions, this paper aims to pro-
vide a comprehensive comparison of white-box and black-
box methods, highlighting their suitability and relevance for
different use cases.

1.4 Focus
The goal of this paper is to compare white-box and black-box
methods, specifically focusing on feature importance tech-
niques. To simplify the comparison, one exemplary method
from each category was chosen. Specifically, this paper com-
pares LIME (Local Interpretable Model-Agnostic Explana-
tions) [Ribeiro et al., 2016] as an example of a black-box
method and Grad-CAM (Gradient-weighted Class Activation
Mapping) [Selvaraju et al., 2019] as an example of a white-
box method.

2 Background
2.1 Fundamentals of XAI
Explainable Artificial Intelligence (XAI) aims to make AI
models more interpretable and understandable to humans.
This is crucial for building trust, ensuring transparency, and
facilitating decision-making in critical areas such as health-
care, finance, and autonomous systems. XAI techniques can
be broadly categorized into two main approaches: white-box
methods and black-box methods.

White-box methods rely on an understanding of the inter-
nal workings of the AI model to generate explanations. In
contrast, black-box methods do not require prior knowledge
of the model’s internal structure. Instead, they treat the model
as a black box and focus on analyzing its input-output be-
havior to generate explanations. This approach is particu-
larly useful for complex models such as deep neural networks
(DNNs), where understanding the internal workings is chal-
lenging or impractical.

White-Box Methods
White-box methods rely on an understanding of the internal
workings of the AI model to generate explanations. This typ-
ically involves analyzing the model’s architecture, weights,
and activations of specific layers to extract interpretable in-
sights. Examples of white-box techniques include gradient-
based methods and layer-wise relevance propagation.

Gradient-based methods: These methods use the gradi-
ents of the output with respect to the input features to un-
derstand the importance of each feature. For example, Grad-
CAM (Gradient-weighted Class Activation Mapping) gener-
ates visual explanations for Convolutional Neural Networks
(CNNs) by using gradient information from the last convolu-
tional layer. This produces a heatmap highlighting important
regions in the input image, helping to understand high-level
visual features captured by deep CNNs.

Layer-wise relevance propagation: This technique decom-
poses the prediction by propagating relevance scores back-
ward through the network layers, assigning importance scores
to each input feature.

White-box methods have the advantage of high fidelity
due to direct access to model parameters. This allows for
detailed insights into the model’s decision-making process.
However, their applicability diminishes with the complexity
of the model. As models like DNNs become more complex,
understanding and analyzing their internal structures requires
a deep understanding of the model architecture, which can be
a significant drawback.

Black-Box Methods
In contrast, black-box methods do not require access to the
internal structure of the model. Instead, they focus on analyz-
ing the input-output behavior to generate explanations. Tech-
niques in this category include perturbation-based methods
and surrogate models.

Perturbation-based methods: These methods generate ex-
planations by observing the changes in the model’s output
in response to perturbations in the input data. LIME (Lo-
cal Interpretable Model-Agnostic Explanations) is a promi-
nent example. LIME generates perturbed samples around
the instance to be explained and fits an interpretable model
to approximate the local decision boundary of the black-box
model. This method is model-agnostic and can be applied to
any classifier.

Surrogate models: These are simpler, interpretable models
trained to approximate the predictions of the complex model
within a local region around the instance being explained.

Black-box methods are highly versatile and can be applied
to any black-box model without requiring internal access.
This flexibility makes them suitable for a wide range of mod-
els and data types. However, these methods can be computa-
tionally intensive due to the need for multiple model evalua-
tions. Additionally, the explanations they produce may vary
depending on the locality considered, which can lead to less
consistent results.

The choice between white-box and black-box methods de-
pends on the specific AI model and application. White-box
methods provide detailed, interpretable insights but may be
less practical for complex models like DNNs. Black-box



methods, while more flexible and applicable to any model,
can be computationally expensive and may produce less con-
sistent explanations. Understanding these trade-offs is crucial
for selecting the appropriate XAI method for a given appli-
cation, ensuring that the explanations are both accurate and
useful for end-users.

Feature Importance
Feature importance methods play a critical role in XAI by
identifying which features are most influential in the model’s
predictions. Both white-box and black-box methods can be
used to assess feature importance. For example, Grad-CAM
identifies important regions in an image by analyzing gradi-
ent information, while LIME approximates the local decision
boundary to highlight influential features in the input data.
These methods provide insights that help users understand
the factors driving the model’s decisions, which is essential
for building trust and facilitating informed decision-making.

2.2 Grad-CAM: White-Box Method
Grad-CAM (Gradient-weighted Class Activation Mapping)
aims to provide visual explanations for the decisions made
by Convolutional Neural Networks (CNNs). By generat-
ing a heatmap that highlights important regions in the input
image, Grad-CAM helps identify which parts of the image
are most influential in the model’s decision-making process.
This method is particularly useful in applications like medical
imaging, where understanding the model’s focus can enhance
trust and decision-making.

Grad-CAM leverages the gradients flowing into the last
convolutional layer of a CNN to assign importance to the neu-
rons for a specific class. By combining these gradients with
the feature maps of the last convolutional layer, Grad-CAM
produces a localization map that highlights the regions of the
input image that are most relevant to the prediction. This ap-
proach uses the internal architecture of the model, making it
a white-box method.

Detailed Steps:

1. Gradient Calculation:
The first step in Grad-CAM is to compute the gradient
of the score for a target class yc with respect to the fea-
ture map activations Ak ∈ Rw′×h′

of the last convo-
lutional layer, where w′, h′ are width and height of the
activations respectively. This gradient, ∂yc

∂Ak , indicates
how much a small change in the activations of Ak will
affect the score of class c.

2. Neuron Importance Weights Calculation:
Next, the gradients are globally average-pooled to ob-
tain the neuron importance weights αc

k. These weights
represent the importance of each feature map k for the
target class c:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(1)

where Z is the number of pixels in the feature map.

3. Grad-CAM Heatmap Calculation:
Finally, the class-discriminative localization map
Lc

Grad-CAM ∈ Rw′×h′
is computed using a weighted

combination of the feature maps, followed by applying
the Rectified Linear Unit (ReLU) to focus on the
features that have a positive influence on the class score:

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (2)

This results in a heatmap that highlights the regions of
the input image that are most important for the predic-
tion. It is noticable that the coarse heatmap is of the
same size as the convolutional feature maps (14× 14 in
the case of last convolutional layers of VGG [Simonyan
and Zisserman, 2015] and AlexNet [Krizhevsky et al.,
2012]).

E.g., in classifying handwritten digits (MNIST), Grad-
CAM can show that certain areas of the image containing
round shapes are more important for classifying the digit “0”.

Grad-CAM is particularly advantageous for understanding
high-level visual features captured by deep CNNs. By focus-
ing on the gradients in the last convolutional layer, it provides
interpretable explanations of the model’s predictions. How-
ever, it requires a detailed understanding of the model archi-
tecture and the computation of gradients, which might not
always be straightforward.

2.3 LIME: Black-Box-Method
LIME (Local Interpretable Model-Agnostic Explanations)
aims to provide interpretable explanations for the predictions
of black-box models within a local region around the in-
stance being explained by approximating the model locally
with a simpler, interpretable model. The method is designed
to be model-agnostic, meaning it can be applied to any classi-
fier without requiring access to the model’s internal structure.
LIME is particularly valuable in scenarios where the underly-
ing model is too complex to understand directly. The primary
goal is to offer explanations that are faithful to the model’s
predictions, making them understandable to humans regard-
less of the features utilized by the model.

LIME approximates the complex decision function of the
model f with a simpler, interpretable model g within a local
region around the instance to be explained. This is achieved
by generating a set of perturbed samples around the instance
and observing the black-box model’s predictions for these
samples. The perturbed samples are weighted based on their
proximity to the original instance, and an interpretable model
is trained on these samples to approximate the local decision
boundary of the black-box model. The resulting explanation
highlights the features that are most influential for the predic-
tion in the local neighborhood of the instance.

Detailed Steps:
1. Generation of Perturbed Samples:

LIME begins by creating perturbed instances of the input
data. For an image, this might involve altering superpix-
els (clusters of similar pixels) to generate new samples.
These perturbed samples form a dataset Z around the
original instance x.



2. Weighting the Samples:
Each perturbed sample is weighted based on its proxim-
ity to the original instance. This is done using an expo-
nential kernel defined on the L2 distance:

πx(z) = exp

(
−∥z − x∥2

σ2

)
(3)

This weighting ensures that samples closer to the origi-
nal instance have a greater influence on the explanation.

3. Training the Interpretable Model:
LIME then trains a simple, interpretable model g to ap-
proximate the predictions of the complex model f within
the local vicinity of x. The objective is to minimize the
locality-aware loss L(f, g, πx) while keeping the model
g simple:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (4)

Here, Ω(g) is a regularization term that penalizes model
complexity to ensure interpretability.

4. Locally Weighted Square Loss:
The locality-aware loss L(f, g, πx) evaluates how accu-
rately the interpretable model g captures the behavior of
the black-box model f within the local neighborhood:

L(f, g, πx) =
∑
z∈Z

πx(z)(f(z)− g(z))2 (5)

By using this locally weighted loss function, the expla-
nation model is trained to focus more on instances that
are closer to the instance being explained, thus captur-
ing the local decision boundary of the black-box model
more effectively.

For image classification, LIME can explain why a partic-
ular image was classified as a dog by highlighting the super-
pixels (image segments) that are most influential for the pre-
diction. By generating and analyzing perturbed versions of
the image, LIME might reveal that the shape of the ears and
fur patterns are critical features for the classification.

LIME answers the question of feature importance differ-
ently than Grad-CAM. While Grad-CAM uses the internal
gradients of the model to highlight important regions, LIME
approximates the model locally and uses perturbed samples
to generate explanations. This difference in approach allows
LIME to be applied to any black-box model without requir-
ing access to its internal structure. However, the computa-
tional cost of generating multiple model evaluations can be
high, and the quality of the explanation depends on the fi-
delity of the local approximation, which might vary based on
the choice of perturbations and the locality considered.

2.4 Evaluation of Feature Importance Methods
The challenge of comparing explanation techniques and ob-
jectively evaluating their quality lies in the nature of DNN
predictions. Often, these predictions might only be inter-
pretable by experts. Consequently, an explanation technique
itself might also require expert knowledge for interpretation.

To address this, we can introduce quantitative metrics that
provide a more objective assessment of explanation quality.

Explanation Selectivity, as described in [Montavon et al.,
2018], is a quantitative metric used to assess the quality of
an explanation method for feature importance in DNNs. This
metric measures how well the explanation method identifies
the features that have the strongest impact on the DNN’s pre-
diction.

The method works by iteratively removing features based
on their assigned relevance scores (provided by the explana-
tion method) and tracking how much the DNN’s prediction
value drops after removing each feature. A sharp drop in pre-
diction value after removing a feature indicates high selectiv-
ity, meaning the explanation method effectively identified a
feature with a strong influence on the prediction.

To evaluate Explanation Selectivity, we use the Area Un-
der the Curve (AUC) score, where the curve plots the drop in
prediction value against the number of features removed. A
lower AUC score indicates better selectivity because it sug-
gests that removing a small number of high-relevance fea-
tures results in a significant drop in prediction accuracy. This
provides an intuitive interpretation: the explanation method
that better identifies the key features will show a steeper ini-
tial drop, resulting in a lower AUC.

In this paper, Explanation Selectivity is used to compare
the feature importance methods of LIME and Grad-CAM. By
applying this metric, we aim to objectively determine which
method assigns relevance scores that best reflect the actual
feature importance for the DNN’s prediction.

One of the primary advantages of using Explanation Se-
lectivity is its ability to offer a quantitative assessment of dif-
ferent explanation methods. This makes the evaluation pro-
cess more objective, as it relies on measurable changes in the
model’s performance rather than subjective judgments. Fur-
thermore, the AUC score provides an intuitive measure of
how well an explanation method identifies key features. A
lower AUC score, indicating better selectivity, is easy to un-
derstand and interpret, even for those who may not be experts
in the field.

Another significant benefit of Explanation Selectivity is its
versatility. This metric can be applied to any DNN, regardless
of the specific architecture or application domain. This makes
it a valuable tool for researchers and practitioners who need
to evaluate and compare the effectiveness of various feature
importance methods across different models and datasets.

However, there are also some notable disadvantages to con-
sider. One challenge is that interpreting the results of Expla-
nation Selectivity might still require expert knowledge. Un-
derstanding the implications of the AUC score, particularly
in the context of specific applications, can be complex and
may necessitate a deeper understanding of the model and the
domain in which it is applied.

Additionally, the computational cost of using Explana-
tion Selectivity can be significant. The process involves it-
eratively removing features and recalculating the prediction
value, which can be computationally intensive, especially for
large models and datasets. This can be a limiting factor in
scenarios where computational resources are constrained or
when working with very large-scale models.



Explanation Selectivity is a powerful and intuitive metric
for evaluating feature importance methods in DNNs. By com-
paring the AUC scores of LIME and Grad-CAM, we can gain
insights into which method provides more accurate and use-
ful explanations. While it offers several advantages, including
quantitative assessment and versatility, it also presents chal-
lenges in terms of expert knowledge requirements and com-
putational cost. By carefully considering these factors, we
can effectively use Explanation Selectivity to gain valuable
insights into the performance of different explanation meth-
ods. This ultimately helps us answer the question of how to
select an appropriate explanation method for a given applica-
tion. More specifically, Explanation Selectivity enables us to
evaluate the advantages and disadvantages of white-box and
black-box methods for the application of object recognition.
Furthermore, it allows us to make informed selections based
on the metrics and criteria identified, thereby addressing the
overarching research question and its sub-questions.

3 Evaluation of LIME and GradCAM
3.1 Relevance of the Use Case
Object recognition was selected as a relevant use case for this
study. The images used represent real-world objects often in-
volved in automatic classification systems in domains such as
healthcare, finance, and autonomous systems like self-driving
cars, where decisions can significantly impact people’s lives.
Understanding which features drive these decisions is critical
to enhancing trust in AI models.

3.2 Experimental Setup
In this experiment, 20 distinct images were tested on two
models, AlexNet and ResNet50, using the explanation meth-
ods LIME and GradCAM, over ten runs: 20×2×2×10 = 800
test instances in total. Explanation Selectivity, measured by
the AUC score, was employed as the comparison metric. The
AUC scores were computed by iteratively removing the most
relevant features as identified by the explainers. All images
were correctly classified by both models before the experi-
ments. A varied selection of images, combined with ten runs
per test instance, helped stabilize the results and examine the
explainers’ stability. Two different classification models with
distinct architectures were selected to assess how the explain-
ers perform across different model types.

3.3 Experimental Results
The AUC values displayed in Figure 1 and summarized in Ta-
ble 1 demonstrate that LIME outperforms GradCAM in terms
of the average AUC score across the entire sample set. Specif-
ically, on ResNet50, LIME achieves a notably lower AUC
score (approximately 11.85) compared to GradCAM (approx-
imately 14.79), indicating superior Explanation Selectivity.
On AlexNet, the difference between LIME and GradCAM
is marginal, with GradCAM scoring approximately 10.77,
while LIME scores 10.69, suggesting that both methods per-
form similarly in this context.

These results suggest that LIME is generally more effec-
tive at identifying the most relevant features, as indicated by
the lower AUC values, particularly on ResNet50. However,

Figure 1: Average AUC values per Model and Explainer. Standard
deviation shows how the AUC values vary across the entire sample
set

Model GradCAM LIME
AlexNet 10.772466 10.689476
ResNet50 14.792458 11.851634

Table 1: Average AUC Score per model and explainer

this trend does not hold universally across all instances. For
example, in some cases, GradCAM significantly outperforms
LIME, such as the Labrador image on AlexNet, where Grad-
CAM achieves a much lower AUC value (approximately 2.0)
compared to LIME’s 14.88 in the first run. This suggests
that GradCAM’s performance can be highly dependent on the
specific image being analyzed.

The standard deviation of AUC values (Tables 3 and 4) pro-
vides further insight into the stability of each explainer across
different models. On AlexNet, GradCAM exhibits higher
variance in AUC scores compared to LIME, suggesting less
consistency in its explanations. Conversely, on ResNet50,
GradCAM shows lower variance than LIME, highlighting the
model-dependent nature of both methods’ performance.

One of GradCAM’s most significant strengths lies in its
deterministic nature due to its white-box approach. While

Figure 2: AUC scores over 10 runs for three sample images



Model GradCAM LIME
AlexNet 7.586148 5.835976
ResNet50 2.991967 4.118034

Table 2: Standard deviation of average AUC per model and ex-
plainer

Image GradCAM LIME
Tabby 0.0 1.789748
Labrador 0.0 1.264012
Tiger 0.0 2.343777

Table 3: Standard deviation on three sample images per explainer on
AlexNet

LIME (a black-box method) learns a new approximation of
the local explanation with each run, GradCAM produces con-
sistent results across multiple runs. This is illustrated in Fig-
ure 2, where the AUC for GradCAM remains stable across
10 runs for the same image, whereas LIME’s AUC values
vary significantly. This variability in LIME’s performance,
particularly when analyzing individual test instances, raises
concerns about the reliability of its explanations.

Overall, while LIME achieves better average AUC scores,
GradCAM’s performance is more consistent across multiple
runs and is highly dependent on the model being used. This
trade-off between average performance and stability should
be considered when choosing between the two methods, de-
pending on the specific application and the need for reliable,
repeatable explanations.

4 Discussion
4.1 Interpretation of Results
The experimental results provided valuable insights into the
relative strengths and weaknesses of the two XAI meth-
ods—LIME and GradCAM—when applied to object recog-
nition tasks. From the results, it is evident that LIME out-
performed GradCAM on average AUC scores, particularly
on ResNet50, where LIME achieved significantly lower AUC
values. This suggests that LIME is better at focusing on the
most relevant parts of an image, offering a higher degree of
Explanation Selectivity across models. However, this benefit
comes at the cost of stability, as LIME’s performance varies
across runs due to its black-box nature.

In contrast, GradCAM displayed greater consistency and
robustness across multiple runs, as seen in its minimal vari-
ance in AUC scores. This stability is a key strength, partic-
ularly in applications where repeatability is critical. While
LIME’s average performance is better, GradCAM’s deter-

Image GradCAM LIME
Tabby 0.0 0.633267
Labrador 0.0 1.256239
Tiger 0.0 2.033908

Table 4: Standard deviation on three sample images per explainer on
ResNet50

ministic behavior can foster greater trust in high-stakes en-
vironments where stable and repeatable explanations are
paramount.

4.2 Application-Specific Assessment
For the specific use case of object recognition, where under-
standing which parts of an image contributed to a classifica-
tion is essential, LIME’s superior average AUC performance
makes it a strong contender. However, GradCAM’s robust-
ness offers a distinct advantage in scenarios that demand con-
sistent, model-specific explanations.

In real-world applications such as medical imaging or au-
tonomous driving, where reliability and trust in AI models
are crucial, because it can directly impact decision-making,
GradCAM’s deterministic output is likely to be more advan-
tageous. Its ability to generate consistent and repeatable ex-
planations may lead to higher trust, particularly in fields like
medicine, where understanding the rationale behind decisions
is critical for both practitioners and patients. Additionally,
GradCAM’s integration with the model architecture provides
deeper insights into how the model arrives at its decisions,
making it valuable in expert-driven fields such as pathology
or robotics.

Conversely, LIME’s adaptability and model-agnostic na-
ture make it well-suited for broader applications where the fo-
cus is on generalization across different models. For example,
in applications involving rapidly changing datasets or models,
such as product recommendation systems or real-time image
analysis, LIME’s flexibility allows it to provide effective ex-
planations without needing access to model internals.

Ultimately, the findings suggest that the selection of an
XAI method should be guided by the specific needs of the
application, balancing the trade-offs between explanation ac-
curacy (as seen with LIME) and explanation consistency (as
demonstrated by GradCAM). For high-stakes environments
requiring stable, model-specific insights, white-box methods
like GradCAM are preferable. For broader applications need-
ing flexibility, black-box methods like LIME offer greater
generalization and adaptability.

4.3 Generalization of Results
The results of this study suggest broader implications for the
selection of XAI methods across various domains. While the
experiments were conducted using AlexNet and ResNet50,
the trade-offs between white-box and black-box methods ob-
served here are likely applicable to other models and tasks
beyond image classification. When selecting an XAI method,
it is essential to consider the context and requirements of
the application. For scenarios where consistency and model-
specific insights are critical—such as in regulated industries
or research environments—white-box methods like Grad-
CAM provide significant advantages. GradCAM’s internal
knowledge of the model’s architecture allows it to offer sta-
ble and transparent explanations that enhance user trust.

On the other hand, black-box methods like LIME may be
preferable in applications that demand flexibility and general-
ization across different models. LIME’s ability to provide ex-
planations for any model makes it a versatile tool, especially



Figure 3: GradCAM on AlexNet. Notice how it correctly identifies
the dog’s face as most important feature.

in dynamic environments where AI systems are frequently
updated or retrained.
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Application of Explanation Selectivity
Figure 3 illustrates the feature removal process for GradCAM
on AlexNet using the labrador test image. The heatmap gen-
erated by GradCAM highlights the dog’s face as the most im-
portant feature, which is consistent with the model’s classifi-
cation. The AUC score for this instance is shown in Figure
4, indicating the effectiveness of GradCAM in identifying the
key features for the model’s prediction. Additionally, Fig-
ure 5 demonstrates the feature removal process for LIME on
ResNet50 using the tabby test image. LIME generates a local
explanation around the instance being explained, highlighting
the features that are most influential for the model’s predic-
tion. The AUC score for this instance is shown in Figure
6, providing insights into LIME’s performance in identifying
the key features for the model’s decision-making process.
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